Экспрессные методы пробоподготовки при анализе сложных матриц и определении летучих ядов. Хроматографическая идентификация маркеров гнилостных изменений

Савчук С.А. 2018

ГХ-МС и ВЭЖХ-МС/МС исследование биообъектов на наличие лекарственных, сильнодействующих веществ и летучих ядов

Задача исследования: провести исследование тканей мозга, печени и почки крови от трупа Ч-на С.И. 7-ми лет на наличие наркотических средств, психотропных веществ, сильнодействующих или ядовитых летучих веществ, а также лекарственных средств методом газовой хроматографии с массспектрометрическим детектированием (ГХ-МС) и методом жидкостной хроматографии с массспектрометрическим детектированием (ВЭЖХ-MC/MC).

ОПИСАНИЕ ОБЪЕКТА

- На исследование поступили образцы:
 - 1. Фрагменты головного мозга в пластиковой банке (фото 1).
 - 2. Фрагменты печени в пластиковой банке (фото 2).
 - 3. Фрагменты почки в пластиковой банке (фото 3).
- Образцы поступили частично размороженными без видимых гнилостных изменений. Сразу при поступлении были отобраны пробы для анализа, после чего образцы были заморожены и хранились при -20°C.

Внешний вид объектов от трупа Ч-на, поступивших на исследование

Фото 1. Ткани мозга.

Фото 2. Фрагменты печени

Фото 3. Фрагменты почки

ПРОБОПОДГОТОВКА (общие замечания)

- Ткани мозга, печени, почки замораживали, выдерживали в течение ночи, размораживали. Для анализа использовали межклеточную и внутриклеточную жидкость образующуюся в результате лизиса после замораживания размораживания образцов. После отбора проб биожидкостей пробы были немедленно заморожены.
- Отобранные для анализа биологические жидкости исследовали на наличие летучих ядов методом газовой хроматографии с масс-спектрометрическим детектированием на полярных колонках методом равновесной парогазовой фазы и на наличие лекарственных и психоактивных препаратов методами газовой и жидкостной хроматографии с масс-спектрометрическим детектированием.

Подготовка проб межклеточной и внутриклеточной жидкости печени, почки и мозга для исследования на летучие яды

Пробы образцов тканей печени, почки и мозга для парофазного анализа готовили следующим образом. Предварительно образец мышечной ткани выдерживали в морозильной камере в течение 8 ч при -20°C, после чего его размораживали при комнатной температуре. Межклеточную и внутриклеточную жидкость, образовавшуюся в результате разрушения стенок клеточных мембран, собирали и анализировали. Для этого в стандартную хроматографическую виалу вместимостью 2 мл помещали 1 мл межклеточной жидкости и проводили обзорный анализ состава летучих веществ методом анализа равновесной парогазовой фазы. При обзорном анализе внутренний стандарт в пробу не добавляли. При обнаружении этанола в исследуемом образце в концентрации выше 0.2 промилле выполняли повторный количественный анализ с использованием внутреннего стандарта. Внутренний стандарт выбирали таким образом, чтобы он не давал наложений на имеющиеся в пробе летучие вещества.

Подготовка проб межклеточной и внутриклеточной жидкости печени, почки и мозга для исследования на лекарственные и психоактивные вещества

- При проведении ненаправленного анализа из исследуемого объекта необходимо извлекать как неполярные, слабополярные гидрофобные вещества, так и полярные гидрофильные, к которым относится большинство метаболитов/маркеров целевых веществ.
- Для этого использовали две методики жидкость-жидкостной экстракции, отличающиеся тем, что в первом случае в качестве экстрагента использовали бутилацетат слабополярный эффективный растворитель не смешивающийся в водой. Во втором случае в качестве экстрагента использовали ацетонитрил —полярный растворитель с хорошей извлекающей способностью, смешивающийся в водой в любых соотношениях. Во втором случае для разделения водного и органического слоя, а также для удаления воды и липидов из ацетонитрильного экстракта к пробе добавляли хлорид натрия.

Подготовка проб межклеточной и внутриклеточной жидкости печени, почки и мозга для исследования на лекарственные и психоактивные вещества

• Извлечение в ацетонитрил. 800 мкл исследуемых биологических жидкостей помещали в пластиковую пробирку «эппендорф», вместимостью 2 мл, добавляли 300 мг хлорида натрия, 800 мкл ацетонитрила, интенсивно встряхивали на вибромиксере, центрифугировали при 15 тыс. об/мин., отделяли органический слой, упаривали его досуха в токе азота, добавляли 150 мкл ацетонитрила и хроматографировали.

•

• Извлечение в бутилацетат. в стандартную стеклянную виалу вместимостью 2000 мкл помещали 1700 мкл исследуемых биологических жидкостей и 270 мкл бутилацетата, встряхивали на вибромиксере 1 мин, центрифугировали при 3000 об/мин в течение 3-х минут и 1 мкл экстракта вводили в хроматограф. При использовании автосамплера иглу шприца позиционировали для отбора инжектируемой пробы из верхнего органического слоя.

АППАРАТУРА ГХ-МС И МЕТОДЫ ДЛЯ ИССЛЕДОВАНИЯ НА ЭТАНОЛ И ЛЕТУЧИЕ ЯДЫ

Аппаратура ГХ-МС для анализа на этанол и другие летучие вещества:

Скрининговый анализ выполняли на хроматографе масс-селективным детектором «Маэстро» Agilent Technologies 7820/5975N с колонкой HP-FFAP длиной 50 м, внутренним диаметром 0.32 мм, толщиной пленки неподвижной фазы 0.52 мкм.

Условия хроматографирования:

Газ-носитель — гелий марки А, постоянный поток через колонку - 1.3 мл/мин, ввод парогазовой пробы объемом 50 мкл с делением потока 1/20. Температура инжектора - 180°С, интерфейса - 190°С. Программа термостата колонок: 60°С (4 мин) 100С/мин 190°С (30 мин).

Условия масс-спектрометрического детектирования:

Анализ выполняли в режиме сканирования по полному ионному току (SCAN), температура источника ионов - 230°С, температура анализатора - 150°С. Диапазон масс - m/z 29-350 а.е.м. Напряжение на умножителе: результат, полученный при автоматической настройке по перфторбутиламину в режиме ATUNE + 100 кВ.

АППАРАТУРА И МЕТОДЫ ДЛЯ ИССЛЕДОВАНИЯ НА ПСИХОАКТИВНЫЕ И ЛЕКАРСТВЕННЫЕ ВЕЩЕСТВА

Аппаратура ГХ-МС: Скрининговый анализ выполняли на хроматографе с масс-селективным детектором мод. «Маэстро» Agilent Technologies 7820/5975N с колонками HP-5MS.

Условия анализа: газ-носитель гелий, скорость потока через колонку 2 мл/мин. Программа: 50° C (0.5мин) 99° C /мин 100° C (1мин) 15° C/мин 280° C (30 мин). Режим ввода пробы: splitless (без деления потока).

Условия масс-спектрометрического детектирования:

Анализ в режиме сканирования по полному ионному току (SCAN)

Температура источника ионов 230°C

Температура анализатора 150°С

Диапазон масс m/z 29-650 a. e. м.

Напряжение на умножителе: результат, полученный при автоматической настройки по перфторбутиламину в режиме ATUNE + 100 кВ.

В режиме скринингового анализа выполняли определение 780 наркотических и сильнодействующих веществ.

Условия хроматографирования: хроматограф газовый Agilent 7890A с масс-селективным детектором Agilent 5975C, капиллярная кварцевая колонка HP-5MS 30m, 0.25 mm, 0.25 um, газноситель - гелий марки A, постоянный поток 1,2 мл/мин. Объем вводимого образца 1 мкл, без разделения потока. Температура инжектора 270°C, интерфейса 280°C. Программа термостата колонок: 0.5 минут при 50°C, подъем температуры до 100°C со скоростью 70 град/мин, выдержка 0.8 минут при 100°C, подъем температуры до 280°C со скоростью 15 град/мин, выдержка 30 минут при 280°C. Задержка на пик растворителя 3 мин. Регистрация масс-спектров в режиме сканирования полного сканирования (TIC).

Идентификацию проводили с помощью программы AMDIS, библиотеки масс-спектров MPW2011, SUDMED 2444 AMDISLIB 20182444

АППАРАТУРА ВЭЖХ-МС/МС И МЕТОД ДЛЯ ИССЛЕДОВАНИЯ НА ПСИХОАКТИВНЫЕ И ЛЕКАРСТВЕННЫЕ ВЕЩЕСТВА

ВЭЖХ-МС/МС Toxtuper Bruker. Детектор - трехмерная ионная ловушка с жидкостным хроматографом Dionex Ultimate 3000, унифицированным методическим обеспечением, библиотекой масс-спектров MS1, MS2, MS3 и времен удерживания целевых соединений на 1200 веществ.

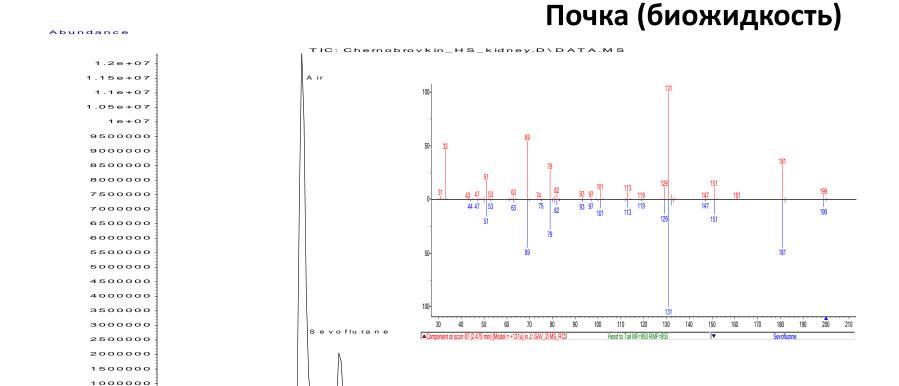
Таблица 1. Параметры и условия ВЭЖХ

Хроматографическая система LC-System	Dionex Ultimate 3000 RS Pump, HPG- 3200RS
Хроматографическая колонка (Column)	Acclaim [®] RSLC 120 C18 2.2 μm, 120A 2.1 x 100 mm (Dionex)
Температура колонки (°C)	40
Растворитель A (Eluent A)	Деионизованная вода (HPLC grade), 0.1 % муравьиной кислоты, 2 mM формиата аммония, 1 % ацетонитрил.
Растворитель В (Eluent B)	Ацетонитрил (HPLC grade), 0.1 % муравьиной кислоты, 2 mM формиата аммония, 1 % деионизованной воды
Тип ввода (Injection Type)	Needle Wash
Объем вводимой пробы, мм3 (мкл, Injection Volume, μl)	5

АППАРАТУРА ВЭЖХ-МС/МС И МЕТОД ДЛЯ ИССЛЕДОВАНИЯ НА ПСИХОАКТИВНЫЕ И ЛЕКАРСТВЕННЫЕ ВЕЩЕСТВА

ВЭЖХ-МС/МС Toxtuper Bruker. Детектор - трехмерная ионная ловушка с жидкостным хроматографом Dionex Ultimate 3000, унифицированным методическим обеспечением, библиотекой масс-спектров MS1, MS2, MS3 и времен удерживания целевых соединений на 1200 веществ.

Таблица 2. Условия градиентного режима подачи элюента


Время, мин	Скорость потока элюента, см3/мин	Содержание элюента В, %
0	0,5	1
1	0,5	1
8	0,5	99
9	0,5	99
9.06	0,5	1
11	0,5	1

АППАРАТУРА ВЭЖХ-МС/МС И МЕТОДЫ ДЛЯ ИССЛЕДОВАНИЯ НА ПСИХОАКТИВНЫЕ И ЛЕКАРСТВЕННЫЕ ВЕЩЕСТВА

Таблица 3. Параметры и условия массспектрометрического детектирования

. Параметры источника (Source Parameters)	Значение при детектировании положительных ионов	Значение при детектировании положительных ионов
Dry Temp (°C)	320	320
Gas Flow (I/min)	8	8
Nebulizer (bar)	2	2
Capillary (V)	4500	4500
End Plate Offset (V)	500	500
MS/MS Frag Amp (V)	0.8	0.8
Режим детектирования 1(pos/neg)*	MS1,2,3 (Full SCAN) 70-800 a.e.m. Method: Toxtuper.M (регистрация только в окнах поиска целевых веществ) в	MS1,2,3 (Full SCAN) 70-800 a.e.m. Method: Toxtuper.M (регистрация только в окнах поиска целевых веществ)
	режиме регистрации положительных ионов	в режиме регистрации отрицательных ионов
Режим детектирования 2 (pos)	MS1,2,3 (Full SCAN) 70-800 a.e.m. Method: Toxtuper_positive.M (регистрация в окнах поиска целевых веществ и в режиме Auto MSn для нецнелевых компонентов)) в режиме регистрации только положительных ионов	
Режим детектирования 3 (neg)		MS1,2,3 (Full SCAN) 70-800 а.е.m. Method: Toxtuper_positive.M (регистрация в окнах поиска целевых веществ и в режиме Auto MSn для нецнелевых компонентов) в режиме регистрации только отрицательных ионов

Результаты ГХ-МС анализа на наличие летучих ядов (проб не измененных гниением)

2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50

Рис.1. Хроматограмма ГХ-МС в режиме полного сканирования парогазовой фазы межклеточной и внутриклеточной жидкости почки от трупа Ч-на. Пик с временем удерживания 2.49 мин — **севофлуран.**

500000

T im e -->

Результаты ГХ-МС анализа на наличие летучих ядов (проб не измененных гниением)

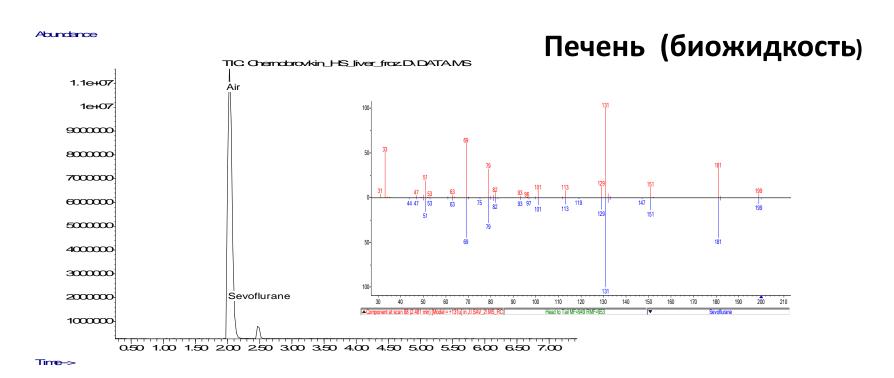


Рис.1. Хроматограмма ГХ-МС в режиме полного сканирования парогазовой фазы межклеточной и внутриклеточной жидкости печени от трупа Ч-на. Пик с временем удерживания 2.49 мин — **севофлуран.**

Результаты ГХ-МС анализа на наличие летучих ядов (проб не измененных гниением)

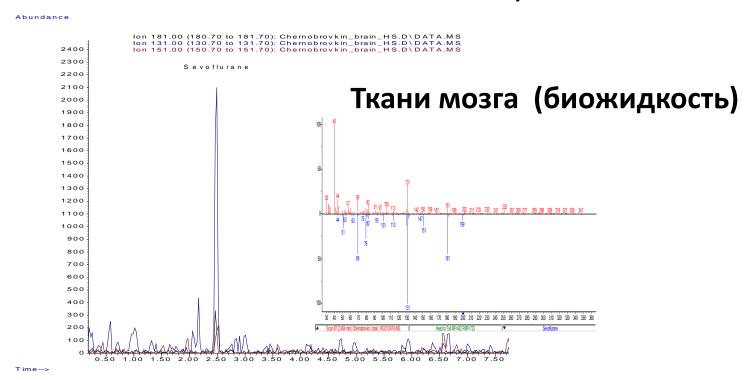


Рис.1. Хроматограмма ГХ-МС в режиме полного сканирования парогазовой фазы межклеточной и внутриклеточной жидкости тканей мозга от трупа Ч-на. Пик с временем удерживания 2.49 мин — севофлуран.

Содержание севофлурана в тканях мозга было в 6 раз меньше чем в почке печени и 20 раз меньше чем в почке.

Микробные маркеры как критерий гнилостных изменений в биологических материалах

Возможности ГХ-МС анализа для идентификации микробных маркеров. Химический состав мембраны бактериальной стенки микроорганизмов характеризуется большим разнообразием жирных кислот, альдегидов и стеринов. В настоящее время их насчитывается более двухсот пятидесяти. В то время как в организме человека насчитывается около двадцати пяти. Это обстоятельство определяет возможность родового или видового анализа инфекций и дисбиозов на преобладающем фоне биологического объекта непосредственно в клиническом материале. Наиболее часто встречающиеся в клинических пробах жирные кислоты, альдегиды и стерины перечислены в табл. 1 с отнесением к вероятным таксонам микроорганизмов [1-2].

Подготовка пробы и метод ГХ-МС анализа. В основе количественного определения микроорганизмов (клеток/грамм) использовали масс-спектрометрический метод микробных маркеров: при подготовке к хроматомасс-спектрометрическому анализу пробу подвергали кислому метанолизу в 1М НСІ в метаноле. Метанолиз проводили в 0,4 мл реактива на 10 –15 мг сухого остатка в течение 1 ч при 80 °С. На этой стадии происходило освобождение жирных кислот и альдегидов из сложных липидов микроорганизмов и других клеток жидкости в виде метиловых эфиров и диметилацеталей. Эти компоненты экстрагировали гексаном (400 мкл) в течение 5 мин, гексановый экстракт высушивали, а сухой остаток обрабатывали 20 мкл N,О-бис(триметил-силил)-трифторацетамида в течение 15 мин при 80 °С для получения триметилсилильных эфиров окси-кислот и стеролов. К реакционной смеси эфиров добавляли 80 мкл гексана, и 1-2 мкл раствора вводили в инжектор ГХ-МС системы.

Высшие жирные кислоты в составе клеточной стенки с отнесением к микроорганизмам:

Nº	Обозначени е	Название	Микроорганизмы					
	Жирные кислоты							
1	C10	<mark>Декановая</mark> Streptococcus						
2	i11	Изоундекановая	Stenotrophomonas,					
3	C12:0	Лауриновая	Arcobacter,					
4	iC12	Изолауриновая	Peptostreptococcus anaerobius					
5	iC13	Изотридекановая	Stenotrophomonas maltophilia, Bacillus subtilis,					
6	a13	Антеизотридекановая	Bacillus cereus, Brevibacterium					
7	13:0	Тридекановая	Selenomonas					
8	i14	Изомиристиновая	Streptomyces, Bacillus, актинобактерии					
9	14:1Δ9	9,10- тетрадеценовая	Clostridium, Streptococcus pneumonia					
10	14:1Δ11	11,12-тетрадеценовая	Simonsiella, Nocardia, Kingella kingae					
11	14:0	Миристиновая	Lactobacillus, Helicobacter, Campylobacter, Streptococcus, Clostridium					
12	2Me14	2-метил- тетрадекановая	Mycobacterium gordonae					
13	i15:1	Изопентадеценовая	Flavobacterium					
14	15:1Δ9	9,10-пентадеценовая	Clostridium propionicum, Bacteroides hypermegas					
15	i15	Изопентадекановая	Propionibacterium, Bacteroides					
16	a15	Антеизопентадеканова я	Staphylococcus, Bacillus, коринеформные бактерии					
17	15:0	Пентадекановая	Большинство видов микроорганизмов, минорный компонент, Selenomonas, Clostridium sporogenes, Bacteroides succinogenes, Bact. ruminicola, Pseudomonas stutzeri					

Высшие жирные кислоты в составе клеточной стенки с отнесением к микроорганизмам (продолжение таблицы):

17	15:0	Пентадекановая	Большинство видов микроорганизмов, минорный компонент, Selenomonas, Clostridium sporogenes, Bacteroides succinogenes, Bact. ruminicola, Pseudomonas stutzeri
18	i16:1	Изогексадеценовая	Desulfovibrio
19	16:1∆7	7,8-гексадеценовая	Clostridium ramosum, Streptococcus
20	16:1∆9	9,10-гексадеценовая	Большинство видов микроорганизмов
21	16:1∆11	11,12-гексадеценовая	Ruminococcus
22	i16:0	Изопальмитиновая	Streptomyces, Nocardiopsis,
23	10Me16	10-метилгексадекановая	Rhodococcus
24	16:0	Пальмитиновая	Большинство видов микроорганизмов
25	i17:1	Изопентадеценовая	Campylobacter mucosales
26	17:1	Гептадеценовая	Mycobacterium, Candida albicans
27	i17:0	Изогептадекановая	Bacillus, Propionibacterium, Prevotella
28	a17:0	Антеизогептадекановая	Corynebacterium, Bacteroides, Nocardiopsis, Nocardia
29	17cyc	Циклогептадекановая	сем. Enterobacteriaceae
30	17:0	Гептадекановая	Большинство видов микроорганизмов, минорный компонент
31	18:4	Октадекатетраеновая	Некоторые грибы и дрожжи
32	18:3	Линоленовая	Грибы и дрожжи
33	18:2	Линолевая	Грибы, дрожжи, простейшие
34	18:1Δ9	Олеиновая	Все организмы
35	i18:1 H		Enterococcus faecalis
36	18:1∆11	Цис-вакценовая	Lactobacillus, Streptococcus, Pseudomonas, Cardiobacterium hominis
37	18:0	Стеариновая	Многие микроорганизмы

Состав и количество микроорганизмов в образцах тканей печени и почки от трупа Ч-на (почка и печень) до и после развития гнилостных изменений (по данным ГХ-МС анализа)

Кислоты – маркеры микроорганизмов		Микроорганизмы	Количество микроорганизмов в образцах ткани, 10 ⁵ клеток/грамм почка печень неизмен измен неизмен измен				
Антеизотридеканова я	a13:0	Bacillus cereus	0	0	0	0	
Антеизопентадекано вая	a15:0	Bacillus megaterium	0	0	0	0	
11,12-Эйкозеновая	20:1Δ11	Streptococcus mutans (анаэробные)	1 390	19916	3 157	19 340	
Изононадекановая	i19:0	Staphylococcus epidermidis	0	0	0	0	
3-гидрокси- изогептадекановая	3hi17	Bacteroides fragilis	0	783	0	675	
Изооктадекановая	i18:0	Clostridium difficile	0	0	0	0	
9,10-тетрадеценовая	14:1Δ9	Cl. hystolyticum/Str. pneumonia	311	961	514	287	
Копростанол		Eubacterium spp.	898	1528	734	3 232	
3-гидрокси пальметиновая	3h16	Fusobacterium spp	0	3036	0	5 539	
Изопентадекановый	i15a	Propionibacterium acnes	0	307	0	1 546	

Контроль постмортального этилглюкуронида в биологических жидкостях, извлеченных из тканей мозга, почки, печени, подвергшихся гнилостному изменению с образованием этанола 0.5-1.2 г/л

Condition of determination of Ethyl Glrcuronide in blood by HPLC-MS/MS (IT)Toxtyper Bruker

MS/MS detector: Amazon Speed Ion Trap Bruker

HPLC: Dionex Ultimate 3000 with column Acclaim RSLC 120 C18 2.2 μ m, 120A 2.1×100 mm (Dionex).

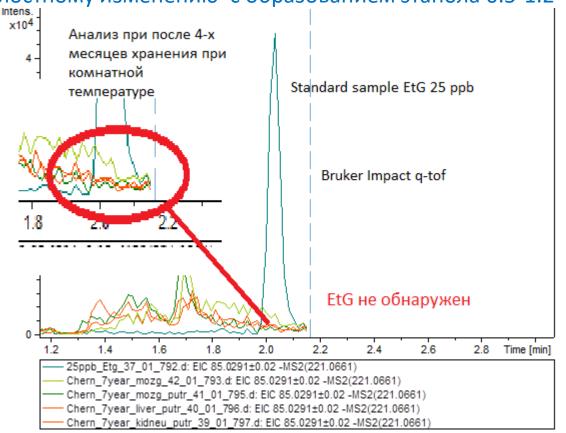
HPLC conditions were the same for both HPLC-MS/MS systems Toxtyper and Impact

Eluent A: deionized water (HPLC grade), 0.1% formic acid, 2 mM ammonium formate, 1% acetonitrile.

Eluent B: Acetonitrile (HPLC grade), 0.1% formic acid, 2 mM ammonium formate, 1% deionized water.

Isocratic mode 5 % eluent B.

Column flow 0.3 ml/min, temperature of the column thermostat 40 $^{\circ}$ C. Injected volume 5 μ l.


MS/MS condition (Toxtyper):

Detection of MS2 spectra in the negative MRM mode. Precursor ions - m/z 221 - 85.

<u>Source Parameters</u>: Dry Temp - 156°C, vaporizer temp 350°C Gas Flow - 3.0 l/min + shears gas, Nebulizer pressure - 2.0 bar.

Для q-tof Impact Bruker Maxis II: Precursor ions - m/z 221.0661- 85.0291, negative mode

Контроль постмортального этилглюкуронида m/z 221.0661 в биологических жидкостях, извлеченных из тканей мозга, почки, печени, подвергшихся гнилостному изменению с образованием этанола 0.5-1.2 г/л

Биологические жидкости из тканей мозга, почки, печени, подвергшихся гнилостному изменению, анализировали после 1-го, 2-х, 3-х и 4-х месяцев хранения при комнатной температуре на приборах Bruker Toxtyper, Impact Maxis Этилглюкуронид не был обнаружен ни в одном из исследованных случаев

Выводы по результатам определения летучих веществ

- В биологических жидкостях, извлеченных из тканей мозга, печени и почки обнаружен севофлюран. Других летучих веществ, в том числе этанола, не обнаружено.
- При повторном анализе, выполненном после хранения аликвот извлеченных биожидкостей в течение 8 часов при комнатной температуре и последующих 36 часов в холодильнике во всех пробах был обнаружен этанол в концентрации от 0.5 до 1.2 промилле.
- На основании первых результатов анализа неизмененных тканей, а наличия маркеров микробиальной активности и отсутствия этилглюкуронида в исследуемых пробах можно утверждать, что обнаруженный в пробах этанол образовался при ненадлежащем хранении проб

Результаты ГХ-МС анализа на наличие психоактивных и лекарственных

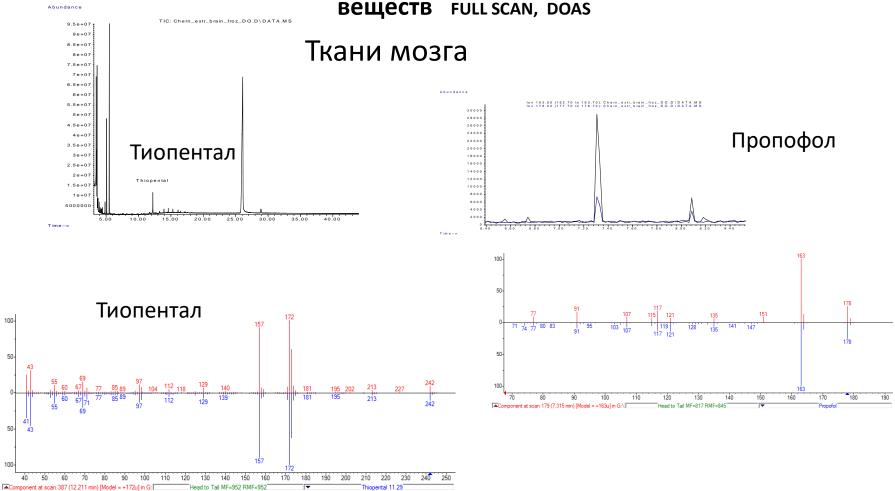


Рис.4. Хроматограмма ГХ-МС в режиме полного сканирования экстракта межклеточной и внутриклеточной жидкости тканей мозга от трупа Ч-на.

В пробе обнаружены: тиопентал и пропофол с метаболитами

Пробоподготовка: первая аликвота - экстракция бутилацетатом, **вторая аликвота —** экстракция ацетонитрилом с высаливанием

Результаты ГХ-МС анализа на наличие психоактивных и лекарственных веществ FULL SCAN, DOAS

Ткани печени

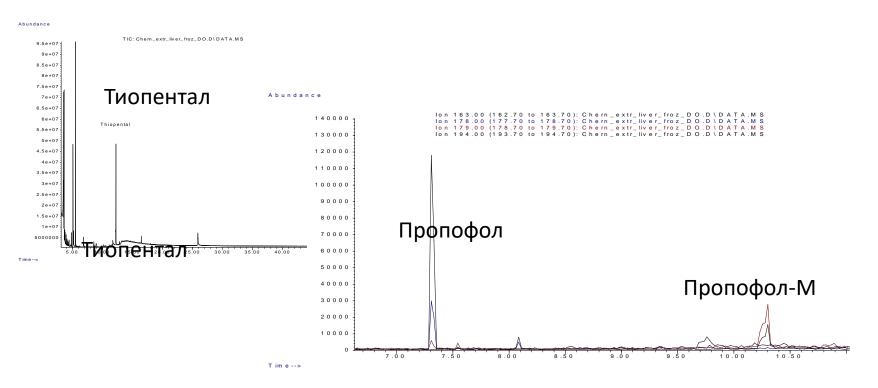


Рис.5. Хроматограмма ГХ-МС в режиме полного сканирования экстракта межклеточной и внутриклеточной жидкости тканей печени от трупа Ч-на. В пробе обнаружены: тиопентал и пропофол

Пробоподготовка: первая аликвота - экстракция бутилацетатом, **вторая аликвота —** экстракция ацетонитрилом с высаливанием

Результаты ГХ-МС анализа на наличие психоактивных и лекарственных веществ FULL SCAN, DOAS

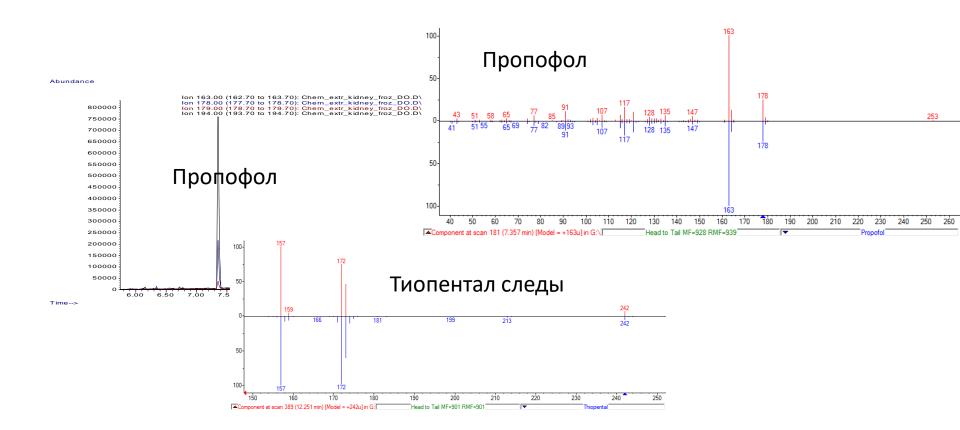
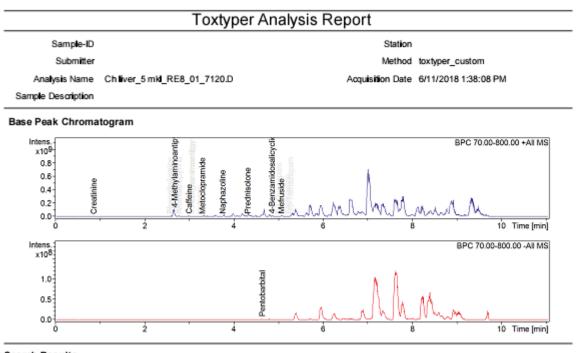



Рис.5. Хроматограмма ГХ-МС в режиме полного сканирования экстракта межклеточной и внутриклеточной жидкости тканей почки от трупа Ч-на. В пробе обнаружены: тиопентал и пропофол

Пробоподготовка: первая аликвота - экстракция бутилацетатом, **вторая аликвота —** экстракция ацетонитрилом с высаливанием

Результаты ВЭЖХ-МС/МС анализа на наличие психоактивных и лекарственных веществ

Library Search Results

Cmp Name	cmp#	Purity'	RT [min]	d RT	m/z [Da]	d m/z	Intensity	ID	Comment
4-Methylaminoantipyrine	4	972	2.67	-0.02	217.95	0.05	1.0 E8	MS2	
Aminoantipyrine	6	980	2.77	-0.02	203.89	0.11	1.4 E7	MS2	
Prednisolone	13	970	4.30	-0.12	361.08	0.12	9.2 E6	MS2	
Caffeine	7	996	3.00	-0.09	194.95	-0.03	8.3 E6	MS2/MS3	
Paracetamol	3	998	2.61	0.02	151.87	0.04	7.8 E6	MS2/MS3	
Clemastine	18	934	5.20	-0.18	344.10	-0.14	6.2 E6	MS2	
4-Benzamidosalicyclic acid	15	981	4.85	0.02	258.17	-0.27	5.1 E6	tentative	MS2 unspecific
Metoclopramide	11	997	3.29	-0.13	300.07	-0.16	4.5 E6	MS2/MS3	
Phenethylamine	2	994	2.56	-0.01	122.00	-0.05	1.5 E6	MS2/MS3	MS2 unspecific
4-Formylaminoantipyrine	8	998	3.06	-0.08	231.93	80.0	1.2 E6	MS2	-
D5-Temazepam	19	890	5.26	-0.23	306.19	-0.21	8.9 E5	MS2	
Naphazoline	12	843	3.74	0.27	211.00	-0.10	8.1 E5	MS2	
4-Acetylaminoantipyrine	9	966	3.06	-0.09	245.98	0.05	6.4 E5	MS2/MS3	MS2 unspecific
Mefruside	17	887	5.06	-0.12	383.04	-0.20	6.1 E5	tentative	
Ketamin	10	974	3.23	-0.07	237.86	0.05	5.5 E5	MS2	
Amidopyrine	5	893	2.72	-0.05	231.95	-0.05	4.8 E5	MS2	
D5-Oxazepam	16	925	5.01	-0.03	292.21	-0.29	3.3 E5	MS2	
Amobarbital	14	996	4.63	-0.29	225.01	0.03	1.5 E5	MS2	
Pentobarbital		939	4.63	-0.13	225.01	-0.01	1.5 E5	MS2	
Creatinine	1	718	0.86	0.33	113.99	0.11	4.5 E4	MS2	

Ткани печени