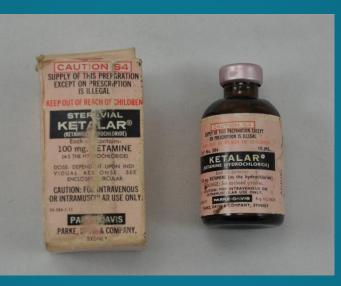
Chiral determination of ketamine and norketamine in hair based on CE separation

Nadia Porpiglia

Department of Diagnostics and Public Health, Unit of Forensic Medicine, University of Verona, Verona, Italy

nadia.porpiglia@univr.it



Ketamine

General features

 Phencyclidine derivative
 Acts at the NMDA receptor Ca²⁺ channel pore

Interaction with μ and κ opioid receptors

► Dissociative anaesthetic ≻Mostly used in veterinary surgery and paediatric emergency ≻Main advantage: profound analgesia vs. maintaining of cardiopulmonary function

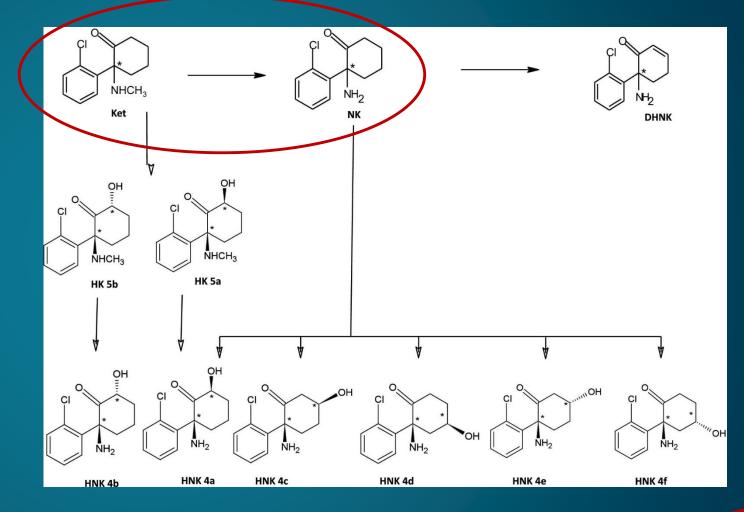
Ketamine's misuse

Abuse overview

Abused since 1980s
"Special K", "Vitamin K", "Lady K"
Attempt to cleanse 'doors of perception' (*K-hole*)
Club, dance and raves parties' drug
Drug-facilitated sexual assault

Practical aspects

Powder, liquid or tablet
 Various administration routes

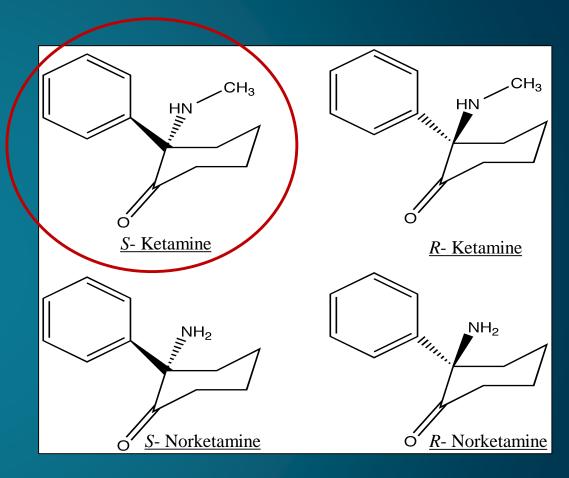


Ketamine and its metabolites

≻Metabolised in liver:

 Demethylation and hydroxylation of ciclohexanone ring
 Major pathway Ndemethylation to norketamine

Norketamine's activity:
20-30% of parent drug
Mainly excreted in urine



A chiral substance

Chiral centre at the cyclohexanone ring S-ketamine

- Greater affinity to NMDA receptor than *R*-K
- More potent than racemic mixture and *R*-K
- Faster recovery time than its racemate
- Smaller dose required, i.e. fewer side effects
- Available in Europe and USA

Aims of the study

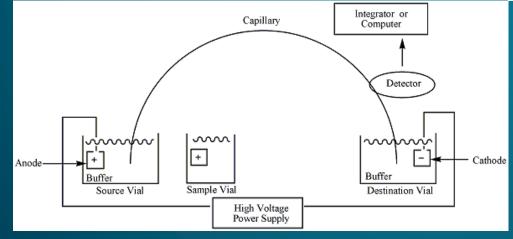
- ➤To establish an enantioselective CE method for both ketamine and norketamine
- To adapt the method for hair analysis to investigate chronic ketamine abuse in different administrative and forensic contexts
- ≻To apply the method to real-case specimens

Why hair?

Substances present in blood trapped in hair follicle ► Non- invasive and non-offensive ► Insignificant quantity of hair is cut Collection of second sample in disputed cases ► Contamination from perspiration and environment ► Wide detection window ► Abuse pattern can be measured

≻Very low amount

CE Method Development


Optimising experimental conditions:

Buffer: ionic strength, pH, enhancing additive

Temperature, voltage, polarity
 Internal standard (I.S.): lamotrigine

► Increase in sensitivity

Running buffer and chiral selector

BUFFER COMPOSITION AND CONCENTRATION	рН	CHIRAL SELECTOR	ORGANIC MODIFIER
50 mM Tris	2.5	β-CD (5, 10, 20 mM)	ACN n-prOH, MeOH(5, 10, 20 %)
		DM-β-CD (5, 10, 20, 30 mM)	MeOH (5, 10, 20 %)
		HP-β-CD (1, 2.5, 5, 10 mM)	MeOH (5, 10, 20 %)
		S-β-CD (5 mM)	
		Reverse Polarity	
75 mM Tris	5	CM-β-CD (7.5 mM)	
50, 100, 150 mM KH ₂ PO ₄	2.5, 4.5	β -CD (10 mM)	
		γ-CD (10, 20, 30 mM)	
50 mM Triethylammonium phosphate	2.5	HS-γ-CD(2.5, 5%) Reverse Polarity	

Complete separation of K enantiomers

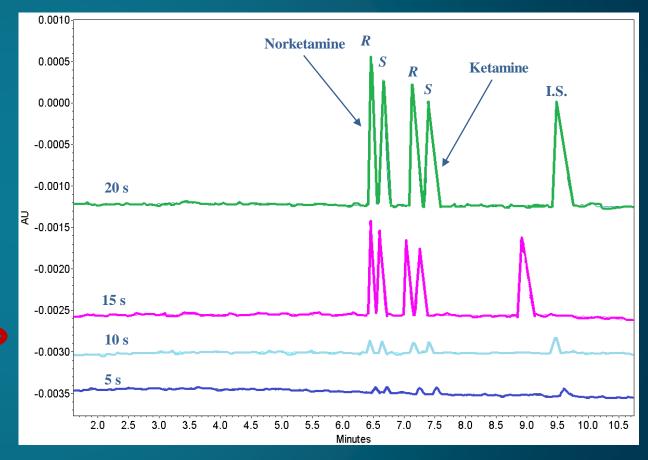
- Complete separation of K enantiomers, partial separation of NK enantiomers
- Non-baseline separation of K enantiomers
- Complete separation of K AND NK enantiomers

Running buffer and chiral selector

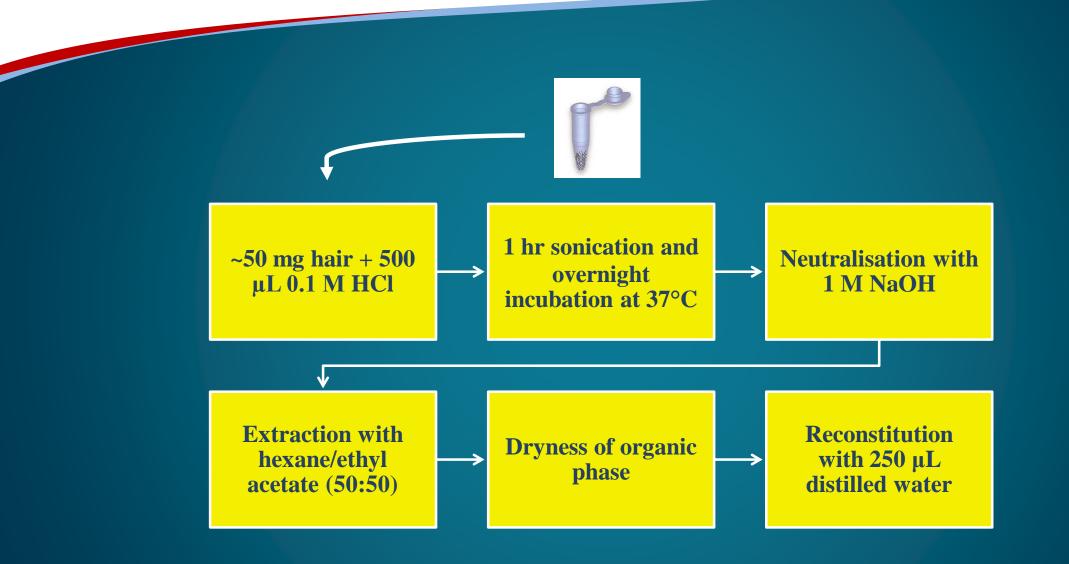
Adjusting to sample stacking....

BUFFER COMPOSITION AND	pН	CHIRAL SELECTOR	POLARITY
CONCENTRATION			
50, 100 mM $NH_4H_2PO_4$	2.5, 3	HS-γ-CD (0.3, 2, 2.5 %)	Reverse
15 mM Tris	2.5	HS-γ-CD (2 %)	Reverse
15 mM Tris	2.5	HS-γ-CD (0.1, 0.3, 0.5 %)	Normal

15 mM Tris pH 2.5 HS-γ-CD 0.1 % Normal Polarity


Resolution (R-USP): 2.0 for NK enantiomers, and 2.4 for K enantiomers

Analytical sensitivity increase


Sample Stacking

- Field Amplified Sample Stacking (FASS)
 - plug of running buffer with NO CDs (0.5 psi, 40 s) prior to
- Large Volume Injection (LVI)
- Electrokinetic Injection 7 kV, 20 s
 - > LOD: 0,08 ng/mg (S/N = 3)
 - ➤ LOQ: 0,25 ng/mg (S/N = 10)

Hair sample: extraction procedure

Method validation

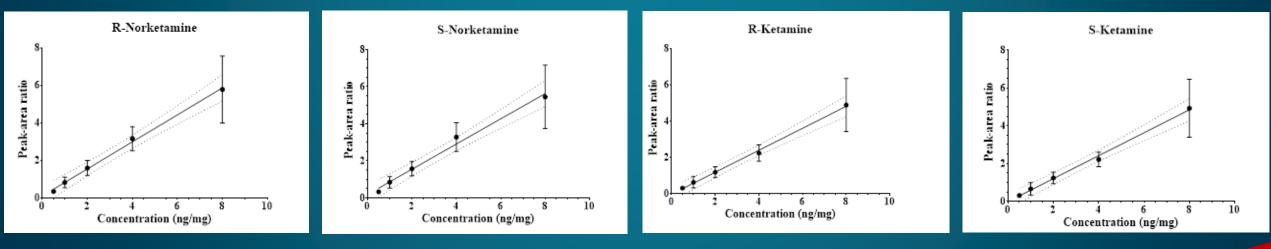
Peak assignment: R-NK, S-NK, R-K, S-K

▶ Resolution (R-USP): 2.0 for NK enantiomers, and 2.4 for K enantiomers

LOD: 0,08 ng/mg (S/N = 3)
 LOQ: 0,25 ng/mg (S/N = 10)

Matrix effect and recoveries percentages

➢ Intra- and inter-day precision and accuracy, %RSD and %RE respectively


Linearity: estimated with a five point- calibration curve

Linearity

Enantiomer (n=5)	Regression equation	Correlation coefficient (R ²)
<i>R</i> -norketamine	$y = (0.72 \pm 0.04)x + (0.12 \pm 0.05)$	0.997
S-norketamine	$y = (0.68 \pm 0.02) x + (0.20 \pm 0.11)$	0.988
<i>R</i> -ketamine	$y = (0.61 \pm 0.09) x - (0.02 \pm 0.08)$	0.998
S-ketamine	$y = (0.61 \pm 0.11) x - (0.01 \pm 0.05)$	0.996

Spiked hair samples - range: 0.5 - 8.0 ng/mg

95% confidence intervals

Recovery and matrix effect

Enantiomer	Expected amounts in ng/mg (set A)	Amount measured in set B (ng/mg)	Matrix effect (%) n=5	Amount measured in set C (ng/mg)	Extraction recovery (%) n=5	
<i>R</i> -norketamine	0.13	0.10 (±0.03)	77	0.10 (±0.02)	79	
	0.50	0.34 (±0.04)	68	0.32 (±0.03)	64	,
	2.00	1.27 (±0.15)	64	1.47 (±0.09)	74	
S-norketamine	0.13	0.11 (±0.04)	89	0.11 (±0.03)	91	
	0.50	0.33 (±0.03)	66	0.32 (±0.03)	64	
	2.00	1.27 (±0.15)	64	1.50 (±0.08)	75	
<i>R</i> -ketamine	0.13	0.14 (±0.08)	112	0.09 (±0.03)	73	
	0.50	0.38 (±0.06)	76	0.25 (±0.04)	(49)	
	2.00	1.26 (±0.17)	63	1.09 (±0.14)	54	
S-ketamine	0.13	0.15 (±0.09)	119	0.11 (±0.04)	89	
	0.50	0.39 (±0.06)	79	0.25 (±0.04)	51	
	2.00	1.31 (±0.18)	66	1.05 (±0.15)	53	

Set A: standard solutions

Set B: hair samples spiked AFTER extraction

Set C: hair samples spiked BEFORE extraction

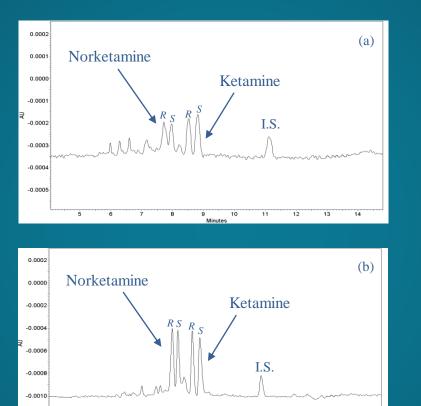
Recovery (%) = $\frac{C}{A} \cdot 100$

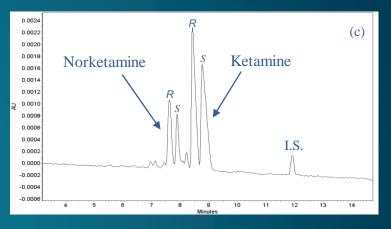
Matrix effect (%) = $\frac{B}{4} \cdot 100$

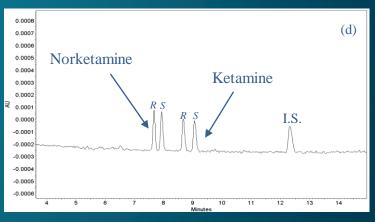
Precision & accuracy

Enantiomer	Amount added (ng/mg)Amount measured (ng/mg)	Area Precision (%RSD)		Area Accuracy (%RE)		Migration Time Precision (%RSD)		
		(ng/mg)	Intra-day	Inter-day	Intra-day	Inter-day	Intra-day	Inter-day
<i>R</i> -norketamine	0.25	0.24 (± 0.03)	11.6	14.0	-16.4	-16.6	0.99	0.24
	1.00	1.00 (± 0.20)	14.5	14.7	-14.6	-17.4	0.75	0.21
S-norketamine	0.25	$0.25 (\pm 0.03)$	11.4	14.6	-17.0	-17.2	1.02	0.25
	1.00	$1.00 (\pm 0.20)$	14.3	14.8	-13.8	-15.9	0.78	0.22
<i>R</i> -ketamine	0.25	0.23 (± 0.06)	12.9	14.4	-22.6	-22.8	1.14	0.31
	1.00	1.07 (± 0.20)	13.4	12.7	-17.7	-21.3	0.85	0.28
S-ketamine	0.25	0.25 (± 0.06)	14.4	17.9	-22.3	-22.9	1.17	0.34
	1.00	1.10 (± 0.21)	15.4	15.7	-22.7	-29.2	0.88	0.30

n = 6 (repeated for 6 days)




Real-world samples


▶n=12 samples▶0.33 -107 ng/mg

 samples from young individuals applying for re-granting of the driving license for DUI of drugs (a-c)

Standard solution of ketamine, norketamine and I.S. (d)

Porpiglia, N. et al. (2016), Forensic Sci Int; 266:304–310

-0.0012

Conclusions

An enantioselective CE method for the separation of ketamine and norketamine was developed and validated

- > The method is suitable for forensic analysis of hair samples
- ≻It can be applied for the analysis of real samples collected from ketamine abusers
- Because of the availability in the market of both racemic ketamine and its
 - S-enantiomer, chiral analysis may reveal the type of drug taken by the individual
- ➢On the other hand, chiral analysis of ketamine could also reveal an enantioselective metabolism of the drug
- ► Based on our recent experience:
 - racemic ketamine is currently abused
 - no evidence of enantioselective metabolism has been found

Grazie!

Formulas

 $R(USP) = 2(t_2 - t_1)/(w_1 + w_2)$

Precision: %RSD = (SD/average) · 100

Accuracy: %RE = (nominal value – expected value/expected value) · 100

